Go Wiki:SliceTricks
自從內建的 append
函式推出後,大部分在 Go 1 中移除的 container/vector
套件功能,都可以使用 append
和 copy
複製。
自從泛型推出後,這些函式中有多數的泛型實作可以在 golang.org/x/exp/slices
套件中取得。
以下是向量方法及其切片操作類比
AppendVector
a = append(a, b...)
Copy
b := make([]T, len(a))
copy(b, a)
// These two are often a little slower than the above one,
// but they would be more efficient if there are more
// elements to be appended to b after copying.
b = append([]T(nil), a...)
b = append(a[:0:0], a...)
// This one-line implementation is equivalent to the above
// two-line make+copy implementation logically. But it is
// actually a bit slower (as of Go toolchain v1.16).
b = append(make([]T, 0, len(a)), a...)
Cut
a = append(a[:i], a[j:]...)
Delete
a = append(a[:i], a[i+1:]...)
// or
a = a[:i+copy(a[i:], a[i+1:])]
Delete without preserving order
a[i] = a[len(a)-1]
a = a[:len(a)-1]
注意 如果元素的類型是 指標 或具有指標欄位的結構,需要由垃圾回收器回收,則 Cut
和 Delete
的上述實作有潛在的 記憶體外洩 問題:某些具有值的元素仍由切片 a
的底層陣列參照,只是在切片中「不可見」。由於「已刪除」的值在底層陣列中被參照,因此即使您的程式碼無法參照該值,在 GC 期間仍可以「到達」已刪除的值。如果底層陣列的生命週期很長,這就代表有外洩。以下程式碼可以修正這個問題
Cut
copy(a[i:], a[j:])
for k, n := len(a)-j+i, len(a); k < n; k++ {
a[k] = nil // or the zero value of T
}
a = a[:len(a)-j+i]
Delete
copy(a[i:], a[i+1:])
a[len(a)-1] = nil // or the zero value of T
a = a[:len(a)-1]
Delete without preserving order
a[i] = a[len(a)-1]
a[len(a)-1] = nil
a = a[:len(a)-1]
Expand
在位置 i
插入 n
個元素
a = append(a[:i], append(make([]T, n), a[i:]...)...)
Extend
附加 n
個元素
a = append(a, make([]T, n)...)
Extend Capacity
確保有空間附加 n
個元素,而不需要重新配置
if cap(a)-len(a) < n {
a = append(make([]T, 0, len(a)+n), a...)
}
Filter (原地)
n := 0
for _, x := range a {
if keep(x) {
a[n] = x
n++
}
}
a = a[:n]
Insert
a = append(a[:i], append([]T{x}, a[i:]...)...)
注意:第二個 append
會建立一個具有自己底層儲存的新切片,並將 a[i:]
中的元素複製到該切片,然後再將這些元素複製回切片 a
(由第一個 append
)。可以使用替代方法來避免建立新切片(以及記憶體垃圾)和第二次複製
Insert
s = append(s, 0 /* use the zero value of the element type */)
copy(s[i+1:], s[i:])
s[i] = x
InsertVector
a = append(a[:i], append(b, a[i:]...)...)
// The above one-line way copies a[i:] twice and
// allocates at least once.
// The following verbose way only copies elements
// in a[i:] once and allocates at most once.
// But, as of Go toolchain 1.16, due to lacking of
// optimizations to avoid elements clearing in the
// "make" call, the verbose way is not always faster.
//
// Future compiler optimizations might implement
// both in the most efficient ways.
//
// Assume element type is int.
func Insert(s []int, k int, vs ...int) []int {
if n := len(s) + len(vs); n <= cap(s) {
s2 := s[:n]
copy(s2[k+len(vs):], s[k:])
copy(s2[k:], vs)
return s2
}
s2 := make([]int, len(s) + len(vs))
copy(s2, s[:k])
copy(s2[k:], vs)
copy(s2[k+len(vs):], s[k:])
return s2
}
a = Insert(a, i, b...)
Push
a = append(a, x)
Pop
x, a = a[len(a)-1], a[:len(a)-1]
推入前端/取消移位
a = append([]T{x}, a...)
彈出前端/移位
x, a = a[0], a[1:]
其他技巧
過濾而不配置
此技巧利用切片與原始切片共用相同後備陣列和容量的事實,因此過濾後的切片會重複使用儲存空間。當然,原始內容會被修改。
b := a[:0]
for _, x := range a {
if f(x) {
b = append(b, x)
}
}
對於必須進行垃圾回收的元素,可以在之後加入以下程式碼
for i := len(b); i < len(a); i++ {
a[i] = nil // or the zero value of T
}
反轉
以相同元素但反向順序取代切片內容
for i := len(a)/2-1; i >= 0; i-- {
opp := len(a)-1-i
a[i], a[opp] = a[opp], a[i]
}
相同,但使用兩個索引
for left, right := 0, len(a)-1; left < right; left, right = left+1, right-1 {
a[left], a[right] = a[right], a[left]
}
洗牌
費雪-耶茲演算法
自 Go 1.10 起,此演算法可在 math/rand.Shuffle 取得
for i := len(a) - 1; i > 0; i-- {
j := rand.Intn(i + 1)
a[i], a[j] = a[j], a[i]
}
批次處理,配置最少
如果您想對大型切片進行批次處理,這會很有用。
actions := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
batchSize := 3
batches := make([][]int, 0, (len(actions) + batchSize - 1) / batchSize)
for batchSize < len(actions) {
actions, batches = actions[batchSize:], append(batches, actions[0:batchSize:batchSize])
}
batches = append(batches, actions)
產生以下結果
[[0 1 2] [3 4 5] [6 7 8] [9]]
就地刪除重複資料 (可比較)
import "sort"
in := []int{3,2,1,4,3,2,1,4,1} // any item can be sorted
sort.Ints(in)
j := 0
for i := 1; i < len(in); i++ {
if in[j] == in[i] {
continue
}
j++
// preserve the original data
// in[i], in[j] = in[j], in[i]
// only set what is required
in[j] = in[i]
}
result := in[:j+1]
fmt.Println(result) // [1 2 3 4]
移至前端,或如果不存在則新增,如果可能就地執行。
// moveToFront moves needle to the front of haystack, in place if possible.
func moveToFront(needle string, haystack []string) []string {
if len(haystack) != 0 && haystack[0] == needle {
return haystack
}
prev := needle
for i, elem := range haystack {
switch {
case i == 0:
haystack[0] = needle
prev = elem
case elem == needle:
haystack[i] = prev
return haystack
default:
haystack[i] = prev
prev = elem
}
}
return append(haystack, prev)
}
haystack := []string{"a", "b", "c", "d", "e"} // [a b c d e]
haystack = moveToFront("c", haystack) // [c a b d e]
haystack = moveToFront("f", haystack) // [f c a b d e]
滑動視窗
func slidingWindow(size int, input []int) [][]int {
// returns the input slice as the first element
if len(input) <= size {
return [][]int{input}
}
// allocate slice at the precise size we need
r := make([][]int, 0, len(input)-size+1)
for i, j := 0, size; j <= len(input); i, j = i+1, j+1 {
r = append(r, input[i:j])
}
return r
}
此內容是 Go Wiki 的一部分。